Efficient CO2-Reducing Activity of NAD-Dependent Formate Dehydrogenase from Thiobacillus sp. KNK65MA for Formate Production from CO2 Gas
نویسندگان
چکیده
NAD-dependent formate dehydrogenase (FDH) from Candida boidinii (CbFDH) has been widely used in various CO2-reduction systems but its practical applications are often impeded due to low CO2-reducing activity. In this study, we demonstrated superior CO2-reducing properties of FDH from Thiobacillus sp. KNK65MA (TsFDH) for production of formate from CO2 gas. To discover more efficient CO2-reducing FDHs than a reference enzyme, i.e. CbFDH, five FDHs were selected with biochemical properties and then, their CO2-reducing activities were evaluated. All FDHs including CbFDH showed better CO2-reducing activities at acidic pHs than at neutral pHs and four FDHs were more active than CbFDH in the CO2 reduction reaction. In particular, the FDH from Thiobacillus sp. KNK65MA (TsFDH) exhibited the highest CO2-reducing activity and had a dramatic preference for the reduction reaction, i.e., a 84.2-fold higher ratio of CO2 reduction to formate oxidation in catalytic efficiency (kcat/KB) compared to CbFDH. Formate was produced from CO2 gas using TsFDH and CbFDH, and TsFDH showed a 5.8-fold higher formate production rate than CbFDH. A sequence and structural comparison showed that FDHs with relatively high CO2-reducing activities had elongated N- and C-terminal loops. The experimental results demonstrate that TsFDH can be an alternative to CbFDH as a biocatalyst in CO2 reduction systems.
منابع مشابه
Light Driven CO2 Fixation by Using Cyanobacterial Photosystem I and NADPH-Dependent Formate Dehydrogenase
The ultimate goal of this research is to construct a new direct CO2 fixation system using photosystems in living algae. Here, we report light-driven formate production from CO2 by using cyanobacterial photosystem I (PS I). Formate, a chemical hydrogen carrier and important industrial material, can be produced from CO2 by using the reducing power and the catalytic function of formate dehydrogena...
متن کاملEfficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli
Hydrogen-dependent reduction of carbon dioxide to formic acid offers a promising route to greenhouse gas sequestration, carbon abatement technologies, hydrogen transport and storage, and the sustainable generation of renewable chemical feedstocks [1]. The most common approach to performing direct hydrogenation of CO2 to formate is to use chemical catalysts in homogeneous or heterogeneous reacti...
متن کاملLevels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum.
The acetogenic bacterium Clostridium thermoautotrophicum, grown on methanol, glucose, or CO2-H2, contained high levels of corrinoids, formate dehydrogenase, tetrahydrofolate enzymes, carbon monoxide dehydrogenase, and hydrogenase. Cell-free extracts catalyzed pyruvate-dependent formation of acetate from methyltetrahydrofolate. These results suggest that C. thermoautotrophicum synthesizes acetat...
متن کاملEffect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata
BACKGROUND Microbial electrosynthesis (MES) and gas fermentation are bioenergy technologies in which a microbial catalyst reduces CO2 into organic carbon molecules with electrons from the cathode of a bioelectrochemical system or from gases such as H2. The acetogen Sporomusa ovata has the capacity of reducing CO2 into commodity chemicals by both gas fermentation and MES. Acetate is often the on...
متن کاملCO2-fixing one-carbon metabolism in a cellulose-degrading bacterium Clostridium thermocellum.
Clostridium thermocellum can ferment cellulosic biomass to formate and other end products, including CO2 This organism lacks formate dehydrogenase (Fdh), which catalyzes the reduction of CO2 to formate. However, feeding the bacterium 13C-bicarbonate and cellobiose followed by NMR analysis showed the production of 13C-formate in C. thermocellum culture, indicating the presence of an uncharacteri...
متن کامل